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Abstract

We study the local and isometric embedding of anm-dimensional Lorentzian manifold in an
(m + 2)-dimensional pseudo-Euclidean space. An inequality is proven between the basic curvature
invariants, i.e. the intrinsic scalar curvature and the extrinsic mean and scalar normal curvature.
The inequality becomes an equality if the two components of the second fundamental form have
a specified form with respect to some orthonormal basis of the manifold. As an application we
look at the space–times embedded in a six-dimensional pseudo-Euclidean space for which the
equality holds. They turn out to be Petrov type D models filled with an anisotropic perfect fluid and
containing a timelike two-surface of constant curvature.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

As early as 1873, a few years after the publication of the famous lecture of Riemann on the
hypotheses which lie at the foundation of geometry, it was conjectured by Schläfli[8] that
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anym-dimensional Riemannian manifold could be locally and isometrically embedded in
ad-dimensional Euclidean space withd = m(m+1)/2. This was later proven by Janet and
Cartan and extended to manifolds with indefinite metric by Friedman[9]. In particular, any
space–time can be locally and isometrically embedded in a pseudo-Euclidean space of at
most 10 dimensions. Embeddings of space–time in non-flat ambient spaces are considered
in [5,6].

From a mathematical point of view the embedding procedure was used as a classification
scheme based on the embedding class[11,15], besides the usual classifications based on
groups of motions or the Petrov type, and as a method of finding new solutions in some
simple cases. See for example Fronsdal’s study of the complete Schwarzschild solution[10].

With the recent advances in higher-dimensional physics (e.g. the Randall–Sundrum sce-
nario[19,20], the space–time–matter theory[24], etc.) the extra dimensions which appear
in the embedding of a space–time seem to be more than just some mathematical curiosity.
In for example[1] isometric embeddings of several brane solutions of string theory are
studied in a flat space with two time directions.

As expressed by Yau[25], a major problem in the study of embeddings of a space–time
is the lack ofcontrol of the extrinsic quantities of the embedded space in relation to the
intrinsic quantities. Recent work[2,3,13], originated by Chen, deals with this problem by
obtaining optimal general inequalities between intrinsic and extrinsic curvature invariants.
In [7] it was conjectured that ifφ : Mm → Nn(c) is an isometric immersion of a Riemannian
manifold in a real space-form, then at every pointp of M:

‖H‖2 ≥ ρ + ρ⊥ − c,

with ‖H‖2 the squared mean curvature,ρ the normalized scalar curvature andρ⊥ the scalar
normal curvature. This conjecture was proved form = 2 andn ≥ 4 in [12] and in the case
m is general andn = m + 2 in [7].

In this paper we will extend the above inequality to a Lorentzian manifold embedded
locally and isometrically in a pseudo-Euclidean space with codimension 2. If equality
holds the second fundamental form has a specific form and inSection 4we show that
space–times which realize the equality are Petrov type D anisotropic fluid models with a
timelike two-surface of constant curvature. Remark that this approach is different from the
methods usually used in the literature. There the form of the second fundamental form is
determined by restrictions on the physical properties[21] or the Petrov type[15,23]. We on
the other hand use a geometrical equality between intrinsic and extrinsic invariants of the
space–time to determine the second fundamental form.

2. Definitions

In the following Greek indices are space–time indices and capital Latin letters denote
normal space indices. Space–time indices are raised and lowered usinggαβ andgαβ.

Let M be anm-dimensional, time-orientable, Lorentzian manifold andEm+2 an (m +
2)-dimensional pseudo-Euclidean space of signature(+, · · · , +, −, εm+1, εm+2) with εA =
±1, A = m + 1, m + 2. We considerM to be locally and isometrically embedded inEm+2.
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The Levi-Civita connection onM is denoted by∇ and onEm+2 by ∇̃. The covariant
derivative inEm+2 between two tangent vectorsX andY on M can be decomposed in a
tangential and normal part:

∇̃XY = ∇XY + A(X, Y),

with A : TM × TM → N(M) the second fundamental form. If we choose an orthonormal
basis{ξm+1, ξm+2} in the normal spaceN(M) of M, A is given by

A(X, Y) =
m+2∑

C=m+1

εCη(∇̃XY, ξC)ξC, (1)

wherebyη denotes the metric onEm+2.
The integrability conditions for the existence of such an embedding are given by the

Gauss–Codazzi–Ricci equations:

Rαβγµ = εm+1(ΩαγΩβµ − ΩαµΩβγ) + εm+2(ΛαγΛβµ − ΛαµΛβγ), (2)

∇γΩαβ − ∇βΩαγ = εm+2(SβΛαγ − SγΛαβ), (3)

∇γΛαβ − ∇βΛαγ = εm+1(SγΩαβ − SβΩαγ), (4)

∇βSα − ∇αSβ = ΩβγΛ
γ
α − ΩαγΛ

γ

β, (5)

with Ωαβ andΛαβ the components of the second fundamental form andSα the torsion vector.
For an interpretation of this vector as a gauge field in a Kaluza–Klein view of embeddings
see[16] or as a real connection on space–time see[17].

The mean curvature vector is defined as

�H = 1

m
(εm+1Ωα

αξm+1 + εm+2Λα
αξm+2)

and the normalized scalar curvature is

ρ = 1

m(m − 1)
R = 1

m(m − 1)
R

αβ
αβ.

Let {e1, . . . , em−1, em} be an orthonormal basis ofM. Because we have space–time appli-
cations in mind we takeM time-orientable such that there exists a global, nowhere zero,
timelike vector field which we denote withem. From(1) we have that

Ωαm = −η(em, ∇̃eαξm+1) = −η(eα, ∇̃emξm+1), (6)

with α = 1, . . . , m − 1, and analogous relations hold forΛαm. We can then introduce the
following natural type of embeddings.

Definition 2.1. An embeddingφ : (Mm, g) → (Em+2, η) with εm+1 = εm+2 = 1 is called
causal-type preserving iff w.r.t. some orthonormal basis{e1, . . . , em}, ∇̃eαξA is spacelike,
A = m + 1, m + 2 andα = 1, . . . , m − 1.
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Definition 2.2. An embeddingφ : (Mm, g) → (Em+2, η) with εm+1 = εm+2 = −1
is called causal-type preserving iff w.r.t. some orthonormal basis{e1, . . . , em}, ∇̃emξA is
timelike,A = m + 1, m + 2.

From(6) we see that causal-type preserving embeddings haveΩαm = Λαm = 0, α =
1, . . . , m − 1. Remark that if this holds for some orthonormal basis it immediately holds
for every orthonormal basis because the timelike vectorem is fixed. The only freedom
remaining are orthogonal transformations in the spacelike part ofM which preserve the
decompositions ofΩ andΛ.

We further need two types of norms. IfB = (bαβ) is anm × m matrix in a Lorentzian
manifold, we introduce the analogue of the Euclidean norm as

‖B‖2 =
m∑

α,β=1

εαβ|bαβ|2,

with εαβ = εαεβ. If �v = v1ξm+1 + v2ξm+2 is a vector in normal space, we define the norm:

‖v‖2
⊥ = εm+1(v1)2 + εm+2(v2)2.

Using these definitions we define the scalar normal curvature as

ρ⊥ =
√

2

m(m − 1)
‖[Ω, Λ]‖.

From the Ricciequation (5)we see thatρ⊥ corresponds, up to a constant factor, to the square
length of the normal curvature tensor. Thus, the normal connection ofM is flat if and only if
ρ⊥ = 0 and this is equivalent to the simultaneous diagonalizability of both components of
the second fundamental form. For further details on the scalar normal curvature see[7,12].

In the proof of the theorem we will need the following generalization of a lemma from
[4].

Lemma 2.1. Let X = (xαβ) and Y = (yαβ) be two symmetric m × m matrices in an
m-dimensional Lorentzian space,such that w.r.t. some orthonormal basis {e1, . . . , em}, xαm =
yαm = 0, with α = 1, . . . , m − 1. Then the following inequality holds

‖[X, Y ]‖2 ≤ 2‖X‖2‖Y‖2

and equality holds if and only if with respect to some orthonormal basis {v, w, e3, . . . , em}
of M the two matrices take the form:

Xαβ = 2τv(αwβ), Y = µvαvβ − µwαwβ,

with vαvα = wαwα = 1.

Proof. Choose an orthonormal basis inM such thatY is diagonal. Then, withX = (xαβ)

andY = diag(y1, . . . , ym), we have

‖[X, Y ]‖2 =
m∑

α�=β=1

εαβx2
αβ(yα − yβ)2.



F. Dillen et al. / Journal of Geometry and Physics 52 (2004) 101–112 105

Using(yα − yβ)2 ≤ 2(y2
α + y2

β) and the condition thatxαm = 0, ∀α = 1, . . . , m − 1, we
find

‖[X, Y ]‖2 ≤ 2
m∑

α�=β=1

εαβx2
αβ(y2

α + y2
β) ≤ 2


 m∑

α,β=1

εαβx2
αβ




 m∑

γ=1

y2
γ


 = 2‖X‖2‖Y‖2.

This proofs the inequality. There is equality if firstxαα = 0 andyα +yβ = 0 whenxαβ �= 0.
Supposex12 �= 0. Then we havey1 = −y2. If the last inequality becomes an equality,
y3 = · · · = ym = 0, and becauseY �= 0, we have thaty1 = −y2 �= 0. Also due to the last
inequality,xαβ = 0 if (α, β) �= (1, 2). �

3. A basic inequality

We can now formulate and proof an inequality between the basic scalar curvature invari-
ants of a embedded manifold, i.e. the intrinsic scalar curvature and the extrinsic squared
mean curvature and scalar normal curvature.

Theorem 3.1. Let φ : Mm → Em+2 be a causal-type preserving, local and isometric
embedding of a Lorentzian manifold Mm in a pseudo-Euclidean space Em+2. Then

‖H‖2
⊥ ≥ ρ + ρ⊥, (7)

if εm+1 = εm+2 = 1, and

‖H‖2
⊥ ≤ ρ − ρ⊥, (8)

if εm+1 = εm+2 = −1.

Proof. We choose any orthonormal basis{e1, . . . , em} on M and an orthonormal basis
{ξm+1, ξm+2} onEm+2 such thatξm+1 is parallel to the mean curvature vector. All compo-
nents will be expressed with respect to these bases. We then find, after contraction of the
Gauss equation:

R = εm+1

(
m∑

α=1

εαΩαα

)2

− εm+1

m∑
α,β=1

εαβ(Ωαβ)2 − εm+2

m∑
α,β=1

εαβ(Λαβ)2

= m2‖H‖2
⊥ − εm+1‖Ω‖2 − εm+2‖Λ‖2 = m2‖H‖2

⊥ − ‖A‖2
⊥.

Define the traceless matrices:

bm+1
αβ = εαβΩαβ − 1

m


 m∑

γ=1

εγΩγγ


 gαβ, bm+2

αβ = εαβΛαβ,
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such that

‖bm+1‖2 =
m∑

α,β=1

εαβ(Ωαβ)2 − 1

m


 m∑

γ=1

εγΩγγ




2

and an analogous expression holds forbm+2. We then have,

‖b‖2
⊥ = εm+1‖bm+1‖2 + εm+2‖bm+2‖2 = ‖A‖2

⊥ − m‖H‖2
⊥,

or putting this in the Gauss equation and using the definition of the normalized scalar
curvature

ρ − ‖H‖2
⊥ = − 1

m(m − 1)
‖b‖2

⊥.

If we take the square of both sides and use the previous lemma, we find

[m(m − 1)]2(ρ − ‖H‖2
⊥)2 = (εm+1‖bm+1‖2 + εm+2‖bm+2‖2)2

≥ 4εm+1εm+2‖bm+1‖2‖bm+2‖2 ≥ 2εm+1εm+2‖[bm+1, bm+2]‖2,

where the last inequality holds ifεm+1 = εm+2. We further have that‖[bm+1, bm+2]‖2 =
‖[Ω, Λ]‖2. Thus

(ρ − ‖H‖2
⊥)2 ≥ (ρ⊥)2.

If εm+1 = εm+2 = +1, thenρ − ‖H‖2
⊥ ≤ 0 and

‖H‖2
⊥ ≥ ρ + ρ⊥.

If εm+1 = εm+2 = −1, thenρ − ‖H‖2
⊥ ≥ 0 and

‖H‖2
⊥ ≤ ρ − ρ⊥.

This proves the theorem. �

Corollary 3.1. There is equality in (7) or (8) if and only if with respect to an orthonormal
basis on M the two components of the second fundamental form take the form

Ωαβ = 2τv(αwβ) + νgαβ, (9)

Λαβ = µvαvβ − µwαwβ, (10)

with vαvα = wαwα = 1 and µ �= 0, τ �= 0.

Proof. This follows from the equality in the lemma and the definition of the matricesbm+1

andbm+2. �
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4. Space–times realizing the equality

We now characterize those space–times for which the equality is satisfied in(7) or (8).
We denote the orthonormal tetrad of the space–timeM with {vα, wα, qα, uα}, uαuα = −1,
and decompose the covariant derivatives of the basis vectors as in[22]:

∇βuα = wαAβ + vαBβ + qαCβ, ∇βwα = uαAβ + vαDβ + qαEβ,

∇βvα = uαBβ − wαDβ + qαFβ, ∇βqα = uαCβ − wαEβ − vαFβ.

The various space–time vectors are decomposed as

Aα = Avvα + Awwα + Aqqα − Auuα.

Because we know the specialized form of the components of the second fundamental form
(9) and (10), we can integrate the Gauss–Codazzi–Ricci equations step by step.

4.1. The Codazzi equations

After projecting the Codazziequations (3) and (4)on the various tetrad components, we
find the relations

∇uν = ∇qν = 0, ∇u ln µ = ∇u ln τ, ∇q ln µ = ∇q ln τ

and

Aα = −∇vν

τ
uα + Avvα − ∇u ln τwα, Bα = −∇wν

τ
uα − ∇u ln τvα − Avwα,

Dα = 1

2
Avuα + 1

2τ
(∇vν − ∇wτ − εµSv)vα + 1

2τ
(∇vτ − ∇wν − εµSw)wα + 1

2
Evqα,

Eα = Evvα + ∇q ln τ wα + ∇vν

τ
qα, Fα = ∇q ln τvα − Evwα + ∇wν

τ
qα.

The Codazzi equations put no restriction onCα. The torsion vector satisfiesSu = Sq = 0
and

ενSv = −µ∇wν

τ
, ενSw = µ∇vν

τ
. (11)

4.2. The Ricci equation

We then use(11) in the Ricciequation (5)and obtain a differential equation forν:

∇v∇vν + ∇w∇wν + 2τ∇vν∇wν

µ2
− τ∇vτ∇vν

µ2
− τ∇wτ∇wν

µ2

+ ∇v ln
(µ

τ

)
∇vν + ∇w ln

(µ

τ

)
∇wν − 2τ2 − µ2

µ2
Dv∇wν

+ 2τ2 − µ2

µ2
Dw∇vν = −2εντ2. (12)

If ν = 0 the Ricci equation gives differential equations for the unknownsSv andSw.
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4.3. Subspaces of constant curvature

Let p
β
α = δ

β
α − vαvβ − wαwβ be the projection operator on the timelike two-surfaceT2

orthogonal to the vectorsvα andwα. The two components of the second fundamental form
of the embedding ofT2 in the space–timeM are

Ωv
αβ = p(α

µp
γ

β)∇µvγ = Bupαβ

and

Ωw
αβ = p(α

µp
γ

β)∇µwγ = Aupαβ.

Using the Gauss equation we find the Riemann tensor of the surfaceT2:

2Rαβγδ = pµ
α pσ

βpρ
γpυ

δ Rµσρυ + 2Ωv
α[γΩv

δ]β + 2Ωw
α[γΩw

δ]β,

= 2{εν2 + A2
u + B2

u}pα[γpδ]β. (13)

With ∇uν = ∇qν = 0 and

Au = ∇vν

τ
, Bu = ∇wν

τ
,

it is a small calculation to show that the coefficient in(13)has zero derivative in theu- and
q-direction. Therefore, the space–times embedded in a six-dimensional pseudo-Euclidean
space such that the equality is realized in(7)or (8)contain a timelike two-surface of constant
curvature and hence admit a groupG3 of motions whose orbits areT2. We further have the
following theorem from[21].

Theorem 4.1. Space–times admitting a group G3 of motions acting on non-null orbits V2
are of Petrov type D or O.

Because we have that for example,vαwβvγwδCαβγδ = (1/3)ε(τ2+µ2) �= 0, the embedded
space–times must be of Petrov type D.

Let us further denote withhβ
α = δ

β
α+uαuβ−qαqβ the projection operator on the spacelike

two-surfaceS2 orthogonal touα andqα. We can again find the two components of the second
fundamental form for the embedding ofS2 in M:

Ωu
αβ = Awhαβ andΩ

q

αβ = −Ewhαβ.

The Riemann tensor of the spacelike surfaceS2 is given by

2Rαβγδ = 2{ε(ν2 − τ2 − µ2) + A2
w + E2

w}hα[γhδ]β.

We find that the space–time is reducible[18], i.e. contains two two-surfaces of constant
curvature, if and only if

∇v{ε(ν2 − τ2 − µ2) + (∇u ln τ)2 + (∇q ln τ)2} = 0

and

∇w{ε(ν2 − τ2 − µ2) + (∇u ln τ)2 + (∇q ln τ)2} = 0.
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4.4. The matter content

From the Gaussequation (2)we can find the energy-momentum tensor of the embedded
space–time asκTαβ = Rαβ − (1/2)Rgαβ or

κTαβ = ε{(τ2 + µ2 − 3ν2)gαβ + 4ντv(αwβ) − (τ2 + µ2)vαvβ − (τ2 + µ2)wαwβ}.
(14)

With respect to the orthonormal tetrad{vα, wα, qα, uα} the energy-momentum tensor de-
scribes a zero-flux imperfect fluid. After a diagonalization in the spacelike two-spaceS2
we find the energy densityρ and anisotropic pressurespi,

ρ = ε(3ν2 − τ2 − µ2), p1 = −3εν2 − 2εντ,

p2 = −3εν2 + 2εντ, p3 = −ρ.

If we want any of the three energy conditions to be satisfied (see[14, p. 88]), the extra
embedding dimensions must always be timelike,ε = −1, and in each of the three cases
some inequalities must hold. For example, the strong energy condition is satisfied if and
only if ε = −1,

τ2 + µ2 − 2τν ≥ 0 and τ2 + µ2 + 2τν ≥ 0.

Remark that a vacuum space–time or non-null Einstein–Maxwell fields are not possible
becauseτ �= 0 andµ �= 0.

4.5. Coordinate representation of the metric

Because the metric has a timelike two-surface of constant curvature we can find coordi-
nates such that the metric reads

ds2 = e2λ(y,z) dy2 + e2γ(y,z) dz2 + Y2(y, z){dx2 − Σ2(x, k) dt2}, (15)

with Σ(x, k) = ( sin(x), x, sinh(x)) for k = (1, 0, −1) [21]. By means of coordinate
transformations which leave the form of the metric invariant, we can putY(y, z) = y if
∂αY �= 0. Working with these so-called canonical coordinates and the orthonormal tetrad

�v = e−λ∂y, �w = e−γ∂z, �q = y−1∂x, �u = −y−1Σ−1∂t,

the Codazzi equations give

∇vν = 0, Sw = 0, ενSv = −µ

y
e−λ �= 0, thusν(z) �= 0 andSv �= 0.

We find that the embedding is non-minimal (ν �= 0). From the derivatives ofτ and µ

resulting from the Codazzi equations we find that

∂y(γ + λ) = 0 and ∂z∂y(γ − λ) = 0,
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or λ = λ1(y) + λ2(z) andγ = −λ1(y) + γ2(z). By means of a coordinate transformation
eγ2(z) dz → dz, we can putγ2(z) = 0. Further integration of the Codazzi equations gives

τ = y exp(f1(z) + 2λ1(y)) and µ = y exp(f2(z) + 2λ1(y)),

with

∂zf1(z) = −2∂zλ2(z) + exp(2f2(z) − f1(z) − λ2(z))

ν(z)

and

∂zf2(z) = −2∂zλ2(z) + exp(f1(z) − λ2(z))

ν(z)
.

We also have

∂zν(z) = exp(f1(z) − λ2(z))

and

Sv = −ε
exp(f2(z) − λ2(z) + λ1(y))

ν(z)
.

Using the expression for the torsion vector in the Ricciequation (12)we find

∂z exp(−λ2(z)) = −εCν(z) exp(f1(z)) (16)

and exp(2λ1(y)) = Cy−2, with C a constant. Thus, givenν, τ andµ the metric reads

ds2 = Cy−2 e2λ2(z) dy2 + C−1y2 dz2 + y2{dx2 − Σ2(x, k) dt2}, (17)

with λ2 a solution of(16)andτ = Cy−1 exp(f1(z)).
As mentioned above, this represents a Petrov type D anisotropic perfect fluid which is

non-minimally embedded in a six-dimensional pseudo-Euclidean space such that equality
holds in(8) with ε = −1.

On the other hand, ifY = a = constant, the Codazzi equations with the above tetrad give
Aα = Bα = Eα = Fα = 0. From the Ricci identity 2∇[γ∇β]uα = uσRσαβγ we find that
ν = 0 or the embedding must be minimal. Using the metric(8) and the Gauss equation we
see that

∂2
xΣ(x, k) = 0.

This can only occur ifk = 0 andΣ(x, k) = x. The Ricci tensor has Segré type [(11)(1, 1)]
with eigenvalues

ξ1 = ξ2 = ε(τ2 + µ2) = ∂2
yγ e−2λ + ∂2

zλ e−2γ + (∂yγ)2 e−2λ + (∂zλ)2 e−2γ

− ∂yγ∂yλ e−2λ − ∂zγ∂zλ e−2γ �= 0 (18)

and ξ3 = ξ4 = 0. Remark that becauseτ �= 0, µ �= 0 this metric is no non-null
Einstein–Maxwell field (becauseR �= 0) but an anisotropic fluid withρ = p3 = 0 and
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p1 = p2. This fluid satisfies the weak and strong energy conditions if and only ifε = −1,
but cannot satisfy the dominant energy condition.

The metric reads

ds2 = e2λ(y,z) dy2 + e2γ(y,z) dz2 + a2{dx2 − x2 dt2}, (19)

with λ andγ satisfying(18).

5. Summary

We showed that space–times for which the equality is realized in(7) or (8) contain a
timelike two-surface of constant curvature and are of Petrov type D. Two classes appear.
Either the models are anisotropic perfect fluid models which are non-minimally embedded in
a six-dimensional pseudo-Euclidean space with signature(3(+), 3(−)) and have coordinate
representation(17)or the anisotropic models satisfying the weak or strong energy conditions
are minimally embedded and have coordinate representation(19).
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